

Abstract—Within the context of application building with
object-oriented programming (which is today the standard for
application development) this paper presents a new and
simpler way to facilitate / automate the writing of classes and
applications. This simple way is the use of a code generator
based on the concept of a Reduced Instruction Set
Programming (RISP) driven by only 4 types of instructions :
“access”, “compute”, “test” and “generate” (i.e A, C, T, G, the
four amino-acid pieces that build proteins).

I. WHAT IS THE PROBLEM TO SOLVE?

 Within the context of modern application building with
object-oriented programming [1], (which is today the standard
for application development [5]) the technical problem to
solve is to facilitate / to automate the writing of classes and
applications by the easiest way as possible.

The best existing solution today is to write the application
by using software development environments (Java SDK,
Eclipse, Visual Studio, etc) and making big efforts to write the
code of classes [3], [4].

II.WHAT IS THE MAIN IDEA OF THE SOLUTION WE

PROPOSE?

 A long practice of application programming leads us to
observe that only four kind of instructions are useful to write
the code of a given program, no matter how complex it is: we
need accessors to get data and values stored within the classes
of the application; we have to compute those data, in order to
produce new values and results – which are ordinary the main
objective of the application; we need tests, in order to evaluate
the results we get or the next step of the algorithm, and to
determine the new action to trigger; and finally we need to
generate events from a given class to others, in order to
execute the procedures and methods embedded in these
classes. See also Steve Mellor [7], p.125.
 So, the necessity of these four kinds of actions is closer to
the structure of biological proteins. Proteins, and also DNA –
desoxy-ribonucleic acid [2] – are assemblies of four - and
only four - pieces, the amino-acids Adenine, Cytosine,
Thymine and Guanine (A, C, T, G) [6].
 According to this natural disposition, the basic idea of the
Protein Programming solution is to propose a code generator
based on a Reduced Instruction Set Programming (RISP)
driven by only four types of instructions:

Philippe Larvet was research engineer at Alcatel-Lucent Bell Labs,

Villarceaux (France). Author of numerous publications and patents, he works
now as independent consultant in Bergerac (France). e-mail: phlarvet@
gmail.com. LinkedIn https://www.linkedin.com/in/philippe-larvet-9ba391/

- A for "access", in order to access the data stored in
the classes of the application;

- C for "compute", in order to calculate values/results
to be stored inside classes or to be exchanged
between classes;

- T for "test", in order to evaluate conditions and
determine what new actions have to be done;

- G for "generate", in order to generate events to other
classes.

 So, an application can be seen as – an application is – a set
of RISP instructions A, C, T, G that can be taken as inputs by
a code generator able to build a complete and compilable
application from only these four types of statements.

III. DESCRIPTION OF ONE EMBODIMENT OF THE

SOLUTION

 Within the context of RISP "protein programming", an
application can be seen as a "polypeptide", made of different
classes (the "peptides") that store data and communicate by
events.
 An event is a call of a public method of a class, eventually
carrying parameters. In the biological world, proteins
communicate by molecular exchanges, through specific
receptors and actuators.
 The RISP protein code generator uses only 4 instructions,
expressed as predicates: A() for accessors, C() for
computations, T() for tests and G() for generating events.

1. A = access. When a peptide (a class) wants to access
the molecule (data) "data_name" stored in the other
peptide "class_name", the Accessor function is used:
A(class_name, data_name);

2. C = calculate. When a new molecule (a calculation)
is needed, the Compute function is used: :
C(result, operand1, operator,
operand2);

3. T = test. The evaluation of a condition is done with
the T() function : T(condition,
action_if_true, action_if_false);

4. G = generate. When a peptide (a class) wants to
activate the function "method_name" of another
peptide "class_name" with the molecule "parameter",
the function G() is used : G(class_name,
method_name, parameter);

This notation is the entry point for the protein code

generator, that produces the final code of the application, in
Java for example.
This RISP ACTG notation, simple and generic, is a help for
building applications, as well as for learning object-oriented

Protein Programming

Philippe Larvet, Research engineer, Alcatel-Lucent Villarceaux, December 2007

programming and teaching the basic principles of object-
oriented development [6]. The notation allows describing an
application (a polypeptide) through its sequencing, like a DNA
or a protein sequencing (ACTG-AACG-ACCG-ACTG-etc.).

IV. EXAMPLE OF A SIMPLE PROTEIN PROGRAMMING

APPLICATION

In order to illustrate our solution, we have chosen the simple
problem of using an ATM (automated teller machine), as it is
described in Wikipedia : see the following link

http://en.wikipedia.org/wiki/Automated_teller_machine)
"An automated teller machine (ATM) is a computerized

telecommunications device that provides the customers of a
financial institution (a bank) with access to financial
transactions in a public space without the need for a human
clerk or bank teller. On most modern ATMs, the customer is
identified by inserting a plastic card with a magnetic stripe or
a plastic smartcard with a chip that contains a unique card
number and some security information, such as an expiration
date. Security is provided by the customer entering a personal
identification number (PIN). Using an ATM, customers can
access their bank accounts in order to make cash withdrawals
(or credit card cash advances) and check their account
balances".

Following this example, we can describe a simple protein-
application able to allow a customer to make a withdrawal,
according to the following use case:

- the customer introduces his card in the ATM
- the ATM asks the customer to enter his secret code

(PIN code)
- the customer enters his code
- the ATM (card reader) checks the code
- if the code is wrong, after 3 tries, the card is returned

to the user
- if the code is correct, the ATM asks the customer to

enter the amount of his withdrawal
- the customer enters the amount of money he wishes

to get
- the ATM checks onto the card if the withdrawal

amount is authorized
- the ATM, via a bank interface, asks the customer's

account if the bank balance allows the withdrawal
- if these conditions are OK, the banknotes can be

distributed

The analysis of this use case gives us the active classes
composing the application (the "polypeptide"): card, card
reader, bank interface, ATM, distribution slot.

The exchanges of events between these elements allow to
implement the use case:

1. every "peptide" (every class) has its own chain of "amino-
acids" (the instructions A, C, T, or G) describing its functions
(the methods of the class);

2. the assembly of all these peptides compose a "protein" = a
"polypeptide" = an application.

Within the context of the ATM example, the formal
descriptions of some "peptides" in terms of ACTG notation
are depicted in the following table.

TABLE I
FORMAL DESCRIPTION, IN ACTG NOTATION, OF SOME “PEPTIDES” FOR THE

ATM APPLICATION EXAMPLE

card {
 data:
 secret_code=1234;
}

card_reader {
 data:
 code_input;

 methods:
 introduce_card() {
 G(dialogue, "Your card is being read");
 G(card_reader, check_code);
 }

 check_code() {
 G(dialogue, "Please enter your PIN code");
 C(code_input, input());
 T(code_input==A(card, secret_code),
G(code_OK), G(code_KO));
 }

 code_OK {
 G(ATM, ask_amount);
 }

 code_KO() {
 G(dialogue, "Wrong code");
 G(card_reader, check_code);
 }

 return_card() {
 G(dialogue, "Please take your card to get
your money");
 G(slot, distribute, A(ATM,
withdrawal_amount));
 }
}

slot {
 data:
 nb_of_banknotes;

 methods:
 distribute(parameter) {
 C(nb_of_banknotes=parameter/A(banknote,
value));
 G(dialogue,"Here are your money (nb of
banknotes = "+nb_of_banknotes+")");
 }
}

From the ACTG notation, the protein code generator produces
the Java class code for the "peptide" card-reader that is shown
in Table II.

TABLE II

JAVA CLASS GENERATED BY PROTEIN GENERATOR FROM THE DESCRIPTION IN

TABLE I

class card_reader {
 //data:
 int code_input;

 // instances (generated)
 dialogue thedialogue;
 card thecard;
 ATM theATM;
 slot theslot;

 //constructor (generated)
 public card_reader() {
 thedialogue = new dialogue();
 thecard = new card();
 theATM = new ATM();
 theslot = new slot();
 }

 //methods:
 public void introduce_card() {
 thedialogue.display("Your card is being
read");
 this.check_code();
 }

 public void check_code() {
 thedialogue.display("Please enter your PIN
code");
 code_input = input();
 if(code_input==thecard.secret_code)
 this.code_OK();
 else
 this.code_KO();
 }

 public void code_OK() {
 theATM.ask_amount();
 }

 public void code_KO() {
 thedialogue.display("Wrong code");
 this.check_code();
 }

 public void return_card() {
 thedialogue.display("Please take your card
to get your money");
 theslot.distribute(
 theATM.withdrawal_amount);
 }
}

V. DIFFERENCES WITH OTHER BIOLOGICAL

ALGORITHMIC APPROACHES

In order to distinguish the proposed solution from the state-
of-the-art, we indicate here some differences with other
biological approaches like genetic algorithms, neural networks
and populationist ant-programming.

 V.1 Genetic algorithms [8]

Genetic algorithms (or evolutionary algorithms) belong to
the family of meta-heuristic algorithms, whose the aim is to
get a close solution, in an acceptable time, to an optimization
problem, when no exact method is known to solve the problem
in a reasonable time. By using the concepts of gene and

mutation, genetic algorithms use the notion of natural
selection and evolution, developed during the XIX century by
Charles Darwin, and apply these concepts to a population of
potential solutions to the given problem. So, the processing
gets closer, by successive "jumps", to an acceptable solution.

Our solution is different because we don't use the concept of
gene, nor mutation, nor natural selection, nor evolution, and
the aim is not an optimization but a means to produce more
easily an executable program within the scope of object-
oriented programming.

 V.2 Artificial Neural networks [9]

An Artificial Neural Network is a computation model whose
the design is very schematically inspired from the
functionning of true neurons (human or not). The neural
networks are generally optimized by statistic-type learning
methods, so they are located firstly in the family of statistical
applications, which they enrich with a set of paradigms
allowing to generate wide functional spaces, flexible and
partially structured, and secondly in the family of Artifical
Intelligence (AI) methods, which they enrich by allowing to
take decisions that lean more on the perception than on the
formal logical reasoning.

Our solution is different because we don't use the concept of
neuron, nor statistic, and the Protein Programming is not an AI
method: the aim is not a possibility to fire a decision, but a
means to ease the production of executable programs within
the scope of object-oriented programming.

V.3 Ant programming [10]
The works on ant-programming develop this concept with

the goal of gaining a deeper understanding on ant colony
optimization, a heuristic method for combinatorial
optimization problems inspired by the foraging behavior of
ants.

Indeed, ant programming allows a deeper insight into the
general principles underlying the use of an iterated Monte
Carlo approach for the multi-stage solution of a combinatorial
optimization problem. Such an insight is intended to provide
the designer of algorithms with new categories, an expressive
terminology, and tools for dealing effectively with the
peculiarities of the problem at hand. Ant-programming
searches for the optimal policy of a multi-stage decision
problem to which the original combinatorial problem is
reduced.

Our solution is different because we don't use the concept of
ant, nor colony, nor optimization. Our aim is not an heuristic
for combinatorial optimization problems, but just a means to
ease the production of executable programs within the scope
of object-oriented programming.

VI. CONCLUSION

We have presented in this paper an approach and a simple
notation that allow developing engineers to program an
application without writing complex lines of code, by using a
very reduced set of instructions. Indeed, only four types of
instructions are necessary to write any kind of program or
complex application.

From this work is born a patent: “Device and method for
building compilable and executable applications from
specifications expressed by classes”, US 20090178023 A1.

The main concept developed in this patent is the following:
A device (D) is intended for building compilable and

executable applications (AP) from high-level representations
of classes, each class storing data and/or implementing at least
one public function and/or being able to activate at least one
chosen public function of at least one other class. This device
(D) comprises a generation means (GM) arranged i) for
producing “new” class representations in a chosen
programming language from formal representations of
specification classes expressing a specification (AS)
describing an application (AP) to be built, each class formal
representation being written in a high-level symbolic language
comprising a class declaration, a data declaration, a function
declaration, and a restricted group of instruction types chosen
among four basic types comprising respectively instructions
for accessing a chosen stored data of a chosen class,
instructions for computing a chosen data from a chosen
operator and possibly from some given input parameter(s),
instructions for testing if a chosen class data satisfies to a
chosen condition, and instructions for generating an activation
of a chosen public function of any class possibly with at least
one chosen data parameter, and ii) for assembling these new
class representations to build a compilable and executable
application (AP) corresponding to the specification (AS).

REFERENCES

[1] John C. Mitchell, Concepts in programming languages, Cambridge
University Press, 2003, ISBN 0-521-78098-5, p.278. Lists: Dynamic
dispatch, abstraction, subtype polymorphism, and inheritance.

[2] J. D. Watson et F. H. C. Crick, Molecular Structure of Nucleic Acids: A
Structure for Deoxyribose Nucleic Acid, Nature, vol. 171, no 4356, 25
avril 1953, p. 737-738 (PMID 13054692, DOI 10.1038/171737a0,
Bibcode 1953Natur.171..737W.

[3] John C. Mitchell, Concepts in programming languages, Cambridge
University Press, 2003, ISBN 0-521-78098-5, p.278.

[4] Pierce, Benjamin, Types and Programming Languages, MIT Press,
2002, ISBN 0-262-16209-1, section 18.1 "What is Object-Oriented
Programming?"

[5] Grady Booch, Object-Oriented Analysis and Design With Applications,
Addison-Wesley, ISBN 0-8053-5340-2, l5th Printing, December 1998.

[6] Nomenclature Committee of the International Union of Biochemistry
(NC-IUB), Nomenclature for Incompletely Specified Bases in Nucleic
Acid Sequences [archive], sur IUBMB [archive], 1984.

[7] Sally Shlaer, Stephen J. Mellor, Object Lifecycles, Modeling the World
in States, Yourdon Press Computing Series, Prentice Hall, 1992, ISBN
0-13-629940-7 p.125, Forming and Assigning Processes.

[8] Eiben, A. E. et al, Genetic algorithms with multi-parent recombination.
PPSN III: Proceedings of the International Conference on Evolutionary
Computation. The Third Conference on Parallel Problem Solving from
Nature: 78–87. ISBN 3-540-58484-6., 1994

[9] S. Hochreiter., Untersuchungen zu dynamischen neuronalen
Netzen, Diploma thesis. Institut f. Informatik, Technische Univ. Munich.
Advisor: J. Schmidhuber, 1991.

[10] Yuehui Chen & Ajith Abraham, Tree-Structure Based Hybrid
Computational Intelligence, Intelligent Systems Reference Library,
Springer-Verlag Berlin Heidelberg, 2006, pp. 121 et suivantes.

[11] Paul T. Ward, Stephen J. Mellor, Structured Development for Real-Time
Systems, Yourdon Press, Prentice Hall, 1986, ISBN 0-13-854787-4,
Vol.I, Introduction & Tools.

SM

AM

GM

AS

AP

D

